Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Interpolation Between the Acoustic Mismatch Model and the Diffuse Mismatch Model for the Interface Thermal Conductance: Application to InN/GaN Superlattice

Identifieur interne : 002B32 ( Main/Repository ); précédent : 002B31; suivant : 002B33

Interpolation Between the Acoustic Mismatch Model and the Diffuse Mismatch Model for the Interface Thermal Conductance: Application to InN/GaN Superlattice

Auteurs : RBID : Pascal:12-0039265

Descripteurs français

English descriptors

Abstract

A model for the thermal conductance of an interface is developed. It interpolates between the widely used acoustic mismatch model and diffuse mismatch model and accounts for the phonon dispersion curves of the materials in contact as calculated from first principles technique. In the present model, the interface morphology is modeled by assuming for the height a Gaussian probability density and a two-dimensional tangential autocorrelation function. The temperature as well as the interface conditions weight the probabilities for the diffuse scattering and the specular behavior of the phonon at the interface. The features of the developed expression for the transmission probability are found to be in excellent agreement with experimental results. The model is applied to predict the phonon events at the interfaces in the InN/GaN superlattice as functions of interface conditions. The results showed that in order to increase the thermal conductance of the InN/ GaN superlattice one should decrease the interfaces' tangential correlation and/or the interfaces' root mean square roughness. The proposed model can be an efficient tool for engineering high thermal conductivity optoelectronic systems or efficient thermoelectric devices.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:12-0039265

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Interpolation Between the Acoustic Mismatch Model and the Diffuse Mismatch Model for the Interface Thermal Conductance: Application to InN/GaN Superlattice</title>
<author>
<name sortKey="Kazan, M" uniqKey="Kazan M">M. Kazan</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Physics, American University of Beirut, P.O. Box 11-0236, Riad El-Solh 1107 2020</s1>
<s2>Beirut</s2>
<s3>LBN</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
<country>Liban</country>
<wicri:noRegion>Beirut</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">12-0039265</idno>
<date when="2011">2011</date>
<idno type="stanalyst">PASCAL 12-0039265 INIST</idno>
<idno type="RBID">Pascal:12-0039265</idno>
<idno type="wicri:Area/Main/Corpus">002407</idno>
<idno type="wicri:Area/Main/Repository">002B32</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0022-1481</idno>
<title level="j" type="abbreviated">J. heat transf.</title>
<title level="j" type="main">Journal of heat transfer</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Autocorrelation function</term>
<term>Diffuse scattering</term>
<term>Gallium nitride</term>
<term>Indium nitride</term>
<term>Interface properties</term>
<term>Mismatch lattice</term>
<term>Phonon density of states</term>
<term>Phonon dispersion</term>
<term>Roughness</term>
<term>Superlattices</term>
<term>Thermal conductivity</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Conductivité thermique</term>
<term>Dispersion phonon</term>
<term>Densité état phonon</term>
<term>Fonction autocorrélation</term>
<term>Diffusion en diffraction</term>
<term>Rugosité</term>
<term>Propriété interface</term>
<term>Accommodation réseau</term>
<term>Nitrure d'indium</term>
<term>Nitrure de gallium</term>
<term>Superréseau</term>
<term>InN</term>
<term>GaN</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">A model for the thermal conductance of an interface is developed. It interpolates between the widely used acoustic mismatch model and diffuse mismatch model and accounts for the phonon dispersion curves of the materials in contact as calculated from first principles technique. In the present model, the interface morphology is modeled by assuming for the height a Gaussian probability density and a two-dimensional tangential autocorrelation function. The temperature as well as the interface conditions weight the probabilities for the diffuse scattering and the specular behavior of the phonon at the interface. The features of the developed expression for the transmission probability are found to be in excellent agreement with experimental results. The model is applied to predict the phonon events at the interfaces in the InN/GaN superlattice as functions of interface conditions. The results showed that in order to increase the thermal conductance of the InN/ GaN superlattice one should decrease the interfaces' tangential correlation and/or the interfaces' root mean square roughness. The proposed model can be an efficient tool for engineering high thermal conductivity optoelectronic systems or efficient thermoelectric devices.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0022-1481</s0>
</fA01>
<fA02 i1="01">
<s0>JHTRAO</s0>
</fA02>
<fA03 i2="1">
<s0>J. heat transf.</s0>
</fA03>
<fA05>
<s2>133</s2>
</fA05>
<fA06>
<s2>11</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Interpolation Between the Acoustic Mismatch Model and the Diffuse Mismatch Model for the Interface Thermal Conductance: Application to InN/GaN Superlattice</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>KAZAN (M.)</s1>
</fA11>
<fA14 i1="01">
<s1>Department of Physics, American University of Beirut, P.O. Box 11-0236, Riad El-Solh 1107 2020</s1>
<s2>Beirut</s2>
<s3>LBN</s3>
<sZ>1 aut.</sZ>
</fA14>
<fA20>
<s2>112401.1-112401.7</s2>
</fA20>
<fA21>
<s1>2011</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>6120C</s2>
<s5>354000507267600110</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2012 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>38 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>12-0039265</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of heat transfer</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>A model for the thermal conductance of an interface is developed. It interpolates between the widely used acoustic mismatch model and diffuse mismatch model and accounts for the phonon dispersion curves of the materials in contact as calculated from first principles technique. In the present model, the interface morphology is modeled by assuming for the height a Gaussian probability density and a two-dimensional tangential autocorrelation function. The temperature as well as the interface conditions weight the probabilities for the diffuse scattering and the specular behavior of the phonon at the interface. The features of the developed expression for the transmission probability are found to be in excellent agreement with experimental results. The model is applied to predict the phonon events at the interfaces in the InN/GaN superlattice as functions of interface conditions. The results showed that in order to increase the thermal conductance of the InN/ GaN superlattice one should decrease the interfaces' tangential correlation and/or the interfaces' root mean square roughness. The proposed model can be an efficient tool for engineering high thermal conductivity optoelectronic systems or efficient thermoelectric devices.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B60H65</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B60C22</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Conductivité thermique</s0>
<s5>02</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Thermal conductivity</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Dispersion phonon</s0>
<s5>03</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Phonon dispersion</s0>
<s5>03</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Dispersión fonón</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Densité état phonon</s0>
<s5>04</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Phonon density of states</s0>
<s5>04</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Densidad estado fotón</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Fonction autocorrélation</s0>
<s5>06</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Autocorrelation function</s0>
<s5>06</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Función autocorrelación</s0>
<s5>06</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Diffusion en diffraction</s0>
<s5>07</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Diffuse scattering</s0>
<s5>07</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Rugosité</s0>
<s5>09</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Roughness</s0>
<s5>09</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Propriété interface</s0>
<s5>10</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Interface properties</s0>
<s5>10</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Propiedad interfase</s0>
<s5>10</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Accommodation réseau</s0>
<s5>11</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Mismatch lattice</s0>
<s5>11</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Acomodación red</s0>
<s5>11</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Nitrure d'indium</s0>
<s5>16</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Indium nitride</s0>
<s5>16</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Indio nitruro</s0>
<s5>16</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Nitrure de gallium</s0>
<s5>17</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Gallium nitride</s0>
<s5>17</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Galio nitruro</s0>
<s5>17</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Superréseau</s0>
<s5>18</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Superlattices</s0>
<s5>18</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>InN</s0>
<s4>INC</s4>
<s5>52</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>GaN</s0>
<s4>INC</s4>
<s5>53</s5>
</fC03>
<fN21>
<s1>023</s1>
</fN21>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002B32 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 002B32 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:12-0039265
   |texte=   Interpolation Between the Acoustic Mismatch Model and the Diffuse Mismatch Model for the Interface Thermal Conductance: Application to InN/GaN Superlattice
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024